Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 5 de 5
Фильтр
1.
J Microbiol Methods ; 204: 106647, 2023 01.
Статья в английский | MEDLINE | ID: covidwho-2211151

Реферат

The PCR technique is indispensable in biology and medicine, but some difficulties are associated with its use, including false positive or false negative amplifications. To avoid these issues, a non-amplification nucleic acid detection protocol is needed. In the present study, we propose a method in which nucleic-acid probe hybridization is combined with thio-NAD cycling to detect nucleic acids without amplification. We report our application of this method for the detection of the gene of MPT64 in Mycobacterium tuberculosis. Two different cDNA probes targeted the mpt64 gene: the first probe was used to immobilize the mpt64 gene, and the second probe, linked with alkaline phosphatase (ALP), was hybridized to a target sequence in the mpt64 gene. A substrate was then hydrolyzed by ALP, and a cycling reaction was conducted by a dehydrogenase with its co-factors (thio-NAD and NADH). The single-stranded DNA, double-stranded DNA, plasmid DNA for the mpt64 gene, and whole genome of M. tuberculosis var. BCG were detected at the level of 105-106 copies/assay, whereas the non-tuberculosis mycobacteria (e.g., M. avium, M. intracellulare, M. kansasii, and M. abscessus) were below the limits of detection. The present method enables us to avoid the errors inherent in nucleic acid amplification methods.


Тема - темы
Mycobacterium tuberculosis , NAD , Mycobacterium tuberculosis/genetics , Nontuberculous Mycobacteria/genetics , Nucleic Acid Amplification Techniques , Nucleic Acid Hybridization , DNA, Bacterial/genetics , DNA, Bacterial/analysis
2.
Biosensors (Basel) ; 11(10)2021 Oct 07.
Статья в английский | MEDLINE | ID: covidwho-1480583

Реферат

The critical risk from airborne infectious diseases, bio-weapons, and harmful bacteria is currently the highest it has ever been in human history. The requirement for monitoring airborne pathogens has gradually increased to defend against bioterrorism or prevent pandemics, especially via simple and low-cost platforms which can be applied in resource-limited settings. Here, we developed a paper-based airborne bacteria collection and DNA extraction kit suitable for simple application with minimal instruments. Airborne sample collection and DNA extraction for PCR analysis were integrated in the paper kit. We created an easy-to-use paper-based air monitoring system using 3D printing technology combined with an air pump. The operation time of the entire process, comprising air sampling, bacterial cell lysis, purification and concentration of DNA, and elution of the DNA analyte, was within 20 min. All the investigations and optimum settings were tested in a custom-designed closed cabinet system. In the fabricated cabinet system, the paper kit operated effectively at a temperature of 25-35 °C and 30-70% relative humidity for air containing 10-106 CFU Staphylococcus aureus. This paper kit could be applied for simple, rapid, and cost-effective airborne pathogen monitoring.


Тема - темы
Air Microbiology , Bacteria , DNA, Bacterial , Bacteria/genetics , Bioterrorism , DNA, Bacterial/analysis , Humans , Specimen Handling , Temperature
3.
Toxins (Basel) ; 13(7)2021 07 08.
Статья в английский | MEDLINE | ID: covidwho-1302455

Реферат

Cyanobacteria are ubiquitous photosynthetic microorganisms considered as important contributors to the formation of Earth's atmosphere and to the process of nitrogen fixation. However, they are also frequently associated with toxic blooms, named cyanobacterial harmful algal blooms (cyanoHABs). This paper reports on an unusual out-of-season cyanoHAB and its dynamics during the COVID-19 pandemic, in Lake Avernus, South Italy. Fast detection strategy (FDS) was used to assess this phenomenon, through the integration of satellite imagery and biomolecular investigation of the environmental samples. Data obtained unveiled a widespread Microcystis sp. bloom in February 2020 (i.e., winter season in Italy), which completely disappeared at the end of the following COVID-19 lockdown, when almost all urban activities were suspended. Due to potential harmfulness of cyanoHABs, crude extracts from the "winter bloom" were evaluated for their cytotoxicity in two different human cell lines, namely normal dermal fibroblasts (NHDF) and breast adenocarcinoma cells (MCF-7). The chloroform extract was shown to exert the highest cytotoxic activity, which has been correlated to the presence of cyanotoxins, i.e., microcystins, micropeptins, anabaenopeptins, and aeruginopeptins, detected by molecular networking analysis of liquid chromatography tandem mass spectrometry (LC-MS/MS) data.


Тема - темы
Cyanobacteria , Harmful Algal Bloom , Lakes/microbiology , Bacterial Toxins/analysis , Bacterial Toxins/toxicity , COVID-19/epidemiology , Cell Line , Cell Survival/drug effects , Cyanobacteria/genetics , DNA, Bacterial/analysis , Environmental Monitoring , Human Activities , Humans , Italy/epidemiology , Microcystis , Pandemics , SARS-CoV-2 , Satellite Imagery
4.
Discov Med ; 29(157): 129-137, 2020.
Статья в английский | MEDLINE | ID: covidwho-812954

Реферат

Sepsis is a life-threatening clinical condition demanding accurate and rapid diagnosis of the culprit pathogen, thereby to improve prognosis. Pathogen determination through blood culture is the gold standard for diagnosis but has limitations due to low sensitivity. Recently, circulating DNAs derived from pathogenic organisms were found in the plasma of patients with sepsis and were further proved to be more sensitive biomarkers for the diagnosis of the pathogen origin in sepsis. However, the fundamental molecular characteristics of circulating DNA in patients with sepsis remain unclear. Here, we used specific PCR and Sanger sequencing to verify the microbiology culture results via the corresponding plasma circulating DNA. We analyzed the composition and molecular characteristics of circulating DNA in septic patients using next-generation sequencing technology. We showed the presence of pathogen-derived circulating DNA in the plasma of patients with sepsis. The sizes of circulating DNA fragments derived from pathogenic bacteria showed a skewed unimodal distribution, while those derived from host cells showed a normal unimodal distribution. Lengths of fragments at peak concentration for both origins ranged from 150 bp to 200 bp, and reads mapping to pathogenic bacteria genome distributed uniformly on the reference. Our findings have improved our understanding of microbial circulating DNA in patients with sepsis as a potential methodology for the accurate diagnosis of sepsis, especially in light of an urgent need for such a diagnosis associated with the COVID-19 infection.


Тема - темы
Bacterial Infections/microbiology , Cell-Free Nucleic Acids/blood , DNA, Bacterial/blood , Sepsis/microbiology , Adult , Aged , Bacterial Infections/complications , Bacterial Infections/diagnosis , Betacoronavirus , COVID-19 , COVID-19 Testing , Cell-Free Nucleic Acids/analysis , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Culture Techniques , DNA, Bacterial/analysis , Female , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Neoplasms/complications , Pandemics , Pneumonia, Viral , Polymerase Chain Reaction , SARS-CoV-2 , Sepsis/complications , Sepsis/diagnosis , Sequence Analysis, DNA
5.
BMC Pediatr ; 20(1): 429, 2020 09 09.
Статья в английский | MEDLINE | ID: covidwho-751227

Реферат

BACKGROUND: Central and peripheral nervous system symptoms and complications are being increasingly recognized among individuals with pandemic SARS-CoV-2 infections, but actual detection of the virus or its RNA in the central nervous system has rarely been sought or demonstrated. Severe or fatal illnesses are attributed to SARS-CoV-2, generally without attempting to evaluate for alternative causes or co-pathogens. CASE PRESENTATION: A five-year-old girl with fever and headache was diagnosed with acute SARS-CoV-2-associated meningoencephalitis based on the detection of its RNA on a nasopharyngeal swab, cerebrospinal fluid analysis, and magnetic resonance imaging findings. Serial serologic tests for SARS-CoV-2 IgG and IgA showed seroconversion, consistent with an acute infection. Mental status and brain imaging findings gradually worsened despite antiviral therapy and intravenous dexamethasone. Decompressive suboccipital craniectomy for brain herniation with cerebellar biopsy on day 30 of illness, shortly before death, revealed SARS-CoV-2 RNA in cerebellar tissue using the Centers for Disease Control and Prevention 2019-nCoV Real-Time Reverse Transcriptase-PCR Diagnostic Panel. On histopathology, necrotizing granulomas with numerous acid-fast bacilli were visualized, and Mycobacterium tuberculosis complex DNA was detected by PCR. Ventricular cerebrospinal fluid that day was negative for mycobacterial DNA. Tracheal aspirate samples for mycobacterial DNA and culture from days 22 and 27 of illness were negative by PCR but grew Mycobacterium tuberculosis after 8 weeks, long after the child's passing. She had no known exposures to tuberculosis and no chest radiographic findings to suggest it. All 6 family members had normal chest radiographs and negative interferon-γ release assay results. The source of her tuberculous infection was not identified, and further investigations by the local health department were not possible because of the State of Michigan-mandated lockdown for control of SARS-CoV-2 spread. CONCLUSION: The detection of SARS-CoV-2 RNA in cerebellar tissue and the demonstration of seroconversion in IgG and IgA assays was consistent with acute SARS-CoV-2 infection of the central nervous infection. However, the cause of death was brain herniation from her rapidly progressive central nervous system tuberculosis. SARS-CoV-2 may mask or worsen occult tuberculous infection with severe or fatal consequences.


Тема - темы
Betacoronavirus/genetics , Coinfection/diagnosis , Coronavirus Infections/epidemiology , DNA, Bacterial/analysis , Mycobacterium tuberculosis/genetics , Pandemics , Pneumonia, Viral/epidemiology , Tuberculosis, Central Nervous System/diagnosis , COVID-19 , Child, Preschool , Coinfection/microbiology , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Fatal Outcome , Female , Humans , Mycobacterium tuberculosis/isolation & purification , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , RNA, Viral/analysis , SARS-CoV-2 , Tuberculosis, Central Nervous System/microbiology
Критерии поиска